
A Java Network File System

for Network Computers

Michael John Radwin

5 May 1997

Abstract

We introduce and discuss the Java Network File System (jnfs), a
network file system for Network Computers (ncs). jnfs works on all
nc–compliant nc devices, provides authentication and authorization
support, works with other file systems such as nfs and ntfs, and
offers reasonable performance.

1 Background and Motivation

Network Computers, or ncs, are “low–cost, easy–to–use network computing
devices” [1]. The concept of the nc was introduced last year to address the
costs and complexities of owning and maintaining personal computers (pcs).
The two central tenets of the nc are

... to be cheaper and easier to maintain and use than pcs, and
to provide access to corporate networks and the Internet. They
are cheaper because they don’t provide local storage, and lack
the processing and video capabilities (as well as the other bells
and whistles) that are standard on today’s pcs. They are easier
to maintain because servers control the software management,
including downloading applications as they are needed, primarily
using Sun’s platform independent Java [6].

1.1 Network Computer Reference Profile

The Network Computer Reference Profile (ncrp) is a set of guidelines of-
fered by Apple, IBM, Netscape, Oracle and Sun as a “common denominator

1



of popular and widely used features and functions” [1]. It defines mini-
mum hardware requirements and software protocols necessary to achieve
nc–compliance. Among the required protocols and software are tcp/ip and
the Java Application Environment.

The ncrp specification proposes that Sun’s Network File System (nfs)
be optionally used as a file system for nc devices: “ncs which do not im-
plement a distributed file system need not implement this protocol” [1]. It
does, however, mandate support of the tcp/ip–based Hypertext Transfer
Protocol (http) to enable Web browsing and the File Transfer Protocol
(ftp) for file exchange.

1.2 NFS on Network Computers

1.2.1 NFS Support on Low End NCs

Many of today’s low–end ncs come with no nfs support or only provide it
as an option. HDS Network Systems, for example, makes a family of nc–
compliant devices called the @workStation. In its most basic configuration,
the @workStation has no file system support, although it does have a full
Java implementation. More expensive @workStation configurations include
full nfs support. Boundless Technology’s Network Computer XL and XLC
are configured similarly; Java support comes on all computers and nfs is
optional.

1.2.2 NFS Support on High End NCs

Other vendors are committed to providing nfs client support. IBM’s Net-
work Station, for example, comes standard with nfs. Sun’s JavaStation runs
the JavaOS [10], which supports nfs at the kernel level. Wyse technology’s
WinTerm 4000 runs on top of the JavaOS, so it would support nfs as well.

1.2.3 Advantages of NFS

In addition to its widespread acceptance, platform–independence, and reli-
ability [3], nfs has proven to be very efficient. Version 3 of nfs provides
numerous performance enhancements over Version 2. Moreover, nfs can be
implemented at the kernel level, which is substantially more efficient than a
user–level daemon [9].

2



1.3 File System Alternatives for Network Computers

There are several alternatives to nfs that provide some form of file system
support on an nc. We briefly discuss each below.

1.3.1 File Transfer Protocol

The ftp protocol [11] was designed for file transfers using tcp/ip. The
model of use described by the protocol’s architects expects that file transfers
occur between a host file system and a client file system. Since ncs do not
have a local file system (although they may optionally have local secondary
storage for caching), the ftp protocol does not fit this model well.

1.3.2 Hypertext Transfer Protocol

The http/1.0 protocol [2] was designed for transfer of hypertext and multi-
media files from a server to a web browser and, to a lesser extent, transfer of
data from a web browser to a web server. http/1.0 specifies a get opera-
tion that transfers a file from a server to the browser. It also defines a post
operation which is designed for annotations, posting messages, submitting
form contents, and appending entries to databases. This post operation
may be extended beyond its intended use to allow ftp–like transfer of files
from the client to the server. http/1.0 also provides a weak challenge–
response authentication protocol (WWW–Authenticate) that requires that
passwords be sent in clear text over the network.

The newer http/1.1 protocol [4] introduces a new put operation that
is designed for transfer and storage of an enclosed file from the client to
the server, and a delete operation that requests that a file on the server
be removed. It also introduces the notion of persistent http connections
and other mechanisms that improve efficiency. http/1.1 provides another
weak challenge–response protocol (Digest) that does not require clear text
passwords [5]. In sum, http/1.1 provides a more reasonable model for a file
system than http/1.0, although it is not widely deployed among today’s
web servers.

1.3.3 WebNFS

The WebNFS protocol [3] is described as “the filesystem for the World Wide
Web”. WebNFS, however, is not a substitute for nfs. Instead, WebNFS is
both a url scheme for specifying filenames in a web browser, and a small

3



set of extensions to nfs that allow it to be used more efficiently over the
Internet. The ncrp does not mandate or suggest WebNFS support, so it
does not work with minimally nc–compliant devices.

2 The Java Network File System

In this paper we introduce the Java Network File System (jnfs), a network
file system for ncs. We offer this alternative for two reasons. First, since
the ncrp does not require a file system and lower–end ncs do not provide
one, jnfs fills this need. Second, since jnfs provides a network file system
interface to a host’s native file system, all ncs can access file systems other
than nfs.

2.1 Design Goals

We had several goals in mind when we designed jnfs. First and foremost,
the file system client had to run on all network computers. Since a number
of vendors are shipping several different types of ncs, it would be ideal to
develop a single client that works on all of them. Second, the file system
had to provide some form of authentication and access control to ensure that
unauthorized users could not gain access to files. In addition, the file server
had to be interoperable with other types of file systems, and performance
had to be reasonably good. Our implementation of jnfs achieved many of
these goals:

• Because the ncrp mandates support of the Java Application Environ-
ment [1], a Java implementation of jnfs ensures that it will work on
all nc–compliant devices.

• Good security is provided by both an authentication protocol based
on digital signatures, and an Access Control List implementation for
granting access to files.

• Interoperability with other file systems is provided because jnfs runs
on top of a native file system. Thus, jnfs can provide access to files
served over both local file systems such as ntfs or a unix local file
system, as well as network file systems such as nfs or dfs.

• Performance is slower than nfs, but reasonable for a Java application.
On average, jnfs file transfers take about 8 times as long as analogous
nfs transfers.

4



Java
Application Environment

jnfs
Remote File classes

(or PC)
Network Computer

RMI
Networkinginterface

java.io RMI
Networking

java.io
File classes

Security
Auth, ACLs

Java
Application Environment

File Server, User Manager
jnfs

Solaris, WinNT, etc.
Native File System

Network or Local
Operating System

Client Server

Figure 1: An overview of the jnfs architecture. Both the client and server
are implemented in Java and communicate using rmi. The client runs on
any nc or pc with the Java Application Environment; the server runs as a
user-level daemon over a native file system and operating system.

3 Architecture

Both the jnfs client and server were developed with Sun’s Java Development
Kit 1.1. The client will run on both any nc–compliant device as well as pcs
with the Java support. The server is also written Java for ease of portability.
An overview of the architecture is presented in Figure 1.

3.1 File Server

The jnfs server runs as a user-level daemon as the privileged user (for
example, root on unix, or any user with the Administrative Privilege on
Windows nt). It serves out files from the underlying file system(s) used by
the host operating system. Thus, if the server’s operating system provides
support for distributed file systems such as nfs, jnfs will serve those files
out as well.

jnfs also employs a small number of native method calls to obtain file
permission information from the underlying file system. The authorization
policy is discussed in detail in Section 4.2.

5



3.2 Network Communication

All communication between the jnfs client and server is achieved with the
Java Remote Method Invocation [8] mechanism. Remote Method Invocation
(rmi) is a framework for “distributed Java–to–Java applications, in which
the methods of remote Java objects can be invoked from other Java virtual
machines, possibly on different hosts.”

In many respects, rmi is like Remote Procedure Call (rpc), an ab-
straction built on top of ip that provides a type-safe mechanism for call-
ing functions remotely. Like rpc, rmi provides connection establishment
and shutdown, and automatic marshaling and un–marshaling of arguments
and return values. rmi, like the newer rpcs (Microsoft and dce, for ex-
ample), is also well–integrated with exception–handling mechanisms; excep-
tions thrown while invoking a remote method on the server side are thrown
across the network to the client.

However, since rpc is procedure–based, it does not fit well in the object–
oriented model that Java provides. rmi provides rpc–like functionality for
Java at the object level. Another difference is that rpc may be used over
several different protocols, including tcp or udp; rmi runs only over tcp

or http.

3.3 Remote File Classes

At the core of jnfs is a client–side class library that mirrors the functionality
of the standard Java file classes in the java.io package. Table 1 presents an
overview of the file classes in the java.io package and their jnfs equivalents.
Each of these jnfs client classes inherits from either its java.io counterpart
or from an ancestor of its java.io counterpart.

The jnfs client classes transmit both file information and blocks of data
across rmi. We describe in greater detail the purpose and functionality of
the jnfs client classes below.

FileServer Serves three main functions: it provides a factory interface to
the remote file classes, allows remote administration of file system users to
the system administrator, and provides the UserManager interface for remote
user management (see Section 3.4 for a discussion of the user management
classes).

Clients obtain a reference to the FileServer with bootstrap Naming ser-
vice and authenticate themselves using the security protocol outlined in

6



package java.io package jnfs purpose
File RemoteFile pathname abstraction,

file attributes
FileInputStream RemoteFileInputStream read–only input stream
FileOutputStream RemoteFileOutputStream write–only output stream
RandomAccessFile RemoteRandomAccessFile read/write, block–orient-

ed random access
FileReader RemoteFileReader character file input
FileWriter RemoteFileWriter character file output

FileServer gives back filehandles,
provides user info

Table 1: java.io file classes and their jnfs equivalents.

Section 4. Once authenticated, a client may request file handles from the
server using the getFile(), getFileInputStream(), getFileOutputStream(), and
getRandomAccessFile() methods. The FileServerHandle convenience class
automates most of this process by performing the bootstrap lookup, and
caching and refreshing authentication tokens.

Since the FileServer interface extends the UserManager interface, the file
server also has a complete set of user management functions. These classes
are discussed in Section 3.4.

RemoteFile A remote interface to a File object on the FileServer, this class
is a descendant of the File class. Methods not overridden by RemoteFile are
implemented in terms of remote calls if they rely on file system information
or locally if they rely only on parsing (such as pathname manipulations).

Once a user has received a handle to an instance of the RemoteFile class, it
may check attributes such as: whether the file exists, is readable, is writable,
is a directory or a file, time last modified, length, list the contents of a
directory, and get acl information.

The RemoteFile class also allows the user to perform several destructive
operations, such as: delete a file or directory, make a directory, rename a file
or directory, and set acl information.

RemoteFileInputStream An interface to a FileInputStream on the File-
Server, this class allows reading data from a file remotely. It is a descendant
of the InputStream class from which all input streams (including FileInput-

7



Stream) descend.
For efficiency, this class uses a client–side helper thread to pre–fetch up

to four blocks of 4096 bytes apiece. A read() operation will block until some
data is available.

RemoteFileOutputStream An interface to a FileOutputStream on the
FileServer, this class allows writing data from a file remotely. Complementing
the RemoteFileInputStream class, this class is a descendant of OutputStream.

For efficiency, this class uses a client–side helper thread to send blocks
to the server in the background. If more than four blocks of data are queued
for delivery, a write() operation will block until space becomes available in
the queue. Upon closing, it blocks until it has flushed all unwritten blocks
to the server.

RemoteRandomAccessFile An interface to a RandomAccessFile on the
FileServer, this class does not descend from RandomAccessFile but rather im-
plements the DataInput and DataOutput interfaces and additionally provides
the getFilePointer(), seek(), and length() functions of RandomAccessFile.

A file may be opened for either read–only or read–write access. All
conversion of Java base types (such as readDouble() or writeLong()) are
done on the client side; data is both fetched and sent across the network
in blocks. For efficiency, this class keeps a buffer cache of recently used
blocks, utilizing a Least Recently Used replacement policy. The cache also
associates a dirty bit with each block, so if a block need not be returned to
the server if it is never written to.

RemoteFileReader A convenience class for reading character files re-
motely. Since the Java specification [7] requires a 16–bit Unicode char
type, Java differentiates between reading the bytes and characters of a file.
The RemoteFileReader interprets a RemoteFileInputStream using the default
character encoding, performing byte–to–char conversions.

RemoteFileWriter A convenience class for writing character files re-
motely. Complementing the RemoteFileReader class, this class does char–
to–byte conversions on a RemoteFileOutputStream.

8



3.4 User Management Classes

The jnfs client library also includes a set of classes for user management:

FileSystemUser Represents a user of the file system. It groups a user
name with a PublicKey and provides an interface for maintaining collections
of active Challenges and Tokens. Tokens and challenges used in the authen-
tication protocol described in Section 4.1.2. The FileSystemUser is primarily
used on the server side of jnfs, although it may be passed back and forth
across the network.

FileSystemSigner Groups a user name with both a PublicKey and a Pri-
vateKey. The class is named a “signer” because it has the ability to digitally
sign Challenges in order to generate Responses. The FileSystemSigner class is
used only on the client side of jnfs. Since it contains sensitive information
(the user’s PrivateKey), it should be stored in a secure place (preferably a
smart card that can be inserted into the nc at login time).

UserTable Maintains a persistent collection of FileSystemUsers. The user
table is read from and written to secondary storage by means of the load()
and save() methods. Provides get(), put() and remove() operations for a
particular user, and both getUsers() and getUsernames() to enumerate the
collection of users.

The UserTable is used directly by the file server implementation and
therefore performs no security checks. The FileServer class does not expose
the UserTable class itself but instead presents the UserManager interface,
discussed below.

UserManager A secure interface for managing users over the network.
The UserManager allows any authentic FileSystemUser to view the complete
table of users or look up an individual user by name (analogous to a world–
readable /etc/passwd file on unix systems). The system administrator may
additionally (once authenticated) invoke any of the methods of the UserTable
class.

9



4 Security

Security in jnfs is discussed in two sections: authentication (confirming that
a user is who they claim to be), and authorization (granting appropriate
access to an authentic user).

4.1 Authentication

One important portion of security is authentication, for any access control
policy is useless if it cannot be determined who is requesting permission to
a file. Thus, some mechanism must be in place to authenticate users before
file system access is granted. In general,

Authentication is nothing more nor less than the determination
by the authorized receiver(s), and perhaps the arbiter(s), that
a particular message was most probably sent by the authorized
transmitter under the existing authentication protocol and that
it hasn’t subsequently been altered or substituted for [13].

Below, we explore authentication as it is used in traditional network file
systems and discuss our implementation of an authentication protocol for
jnfs.

4.1.1 Traditional Network File System Authentication

Although nfs provides several options for authentication, a popular choice is
the “unix style” authentication [9], in which “NFS servers accept client re-
quests only if the client’s network address appears in a list of trusted hosts.”
This scheme requires that the nfs file server trust the client’s operating
system.

The client’s operating system authenticates a user at login time (usually
by means of entering a password). Whenever that user requests access to a
particular file, the local operating system determines if that user should be
granted such access. If so, it requests the file from the nfs file server and
then hands it off to the user.

If the security of the client’s operating system is compromised, then the
security of files served over nfs are compromised because nfs believes that
the local operating system has properly authenticated the user.

10



4.1.2 A Challenge–Response Protocol with Digital Signatures

jnfs employs a more secure challenge–response mechanism for authentica-
tion. The protocol, outlined below, requires a user to use its digital signature
to sign a random number to prove its authenticity. There are four stages to
authentication:

1. Initialization. The user tells the server it wishes to be authenticated.

2. Challenge. The server generates a challenge and issues it to the user.

3. Response. The user signs the challenge and returns it to the server.

4. Verification. The server verifies that the signed version of the challenge
matches the issued challenge and grants access to the client.

In the initialization stage, the user U tells jnfs that it would like access
to the file system. The server confirms that U ’s name NU appears in the
user table and then proceeds to the challenge stage.

jnfs then generates a 64–bit random number R using the SecureRandom
class in the java.security package. The server creates a challenge 〈R, NU〉,
records it, and issues it to U .

U receives the challenge and generates a response by signing 〈R, NU〉
with its secret key PrivU . Using the Digital Signature Algorithm [12], it
creates a signature SU for 〈R, NU〉. The user returns 〈R, NU , SU〉 back to
the server.

The jnfs server verifies the response by using U ’s public key PubU to
interpret the signature SU . If SU is indeed a signed version of the chal-
lenge 〈R, NU〉 that it had previously issued, the server accepts the user’s
credentials, since only U knows the private key PrivU used to produce the
signature from the challenge. For efficiency, the server grants U a token (TU)
it will use on subsequent transactions until it expires. When TU expires, U
repeats the authentication process to obtain another token.

4.1.3 Security of the Protocol

There are several points where the security of the authentication protocol
can be attacked. We address each below:

• An eavesdropper E observes the challenge 〈R, NU〉 as it is sent over
the network from the server to U . In this scenario, E learns two pieces

11



of information: the name of one of the file system users (NU) and
the random number R. This information is only useful to E if it can
generate a signed version of the challenge.

To do so requires that either E have a copy of PrivU or that the Digital
Signature Algorithm is insecure. Since the Digital Signature Algorithm
uses the computationally secure [13] cryptographic hash function sha-

1 for message digests and the RawDSA algorithm for signing data, the
protocol is as secure as these algorithms.

• E intercepts the response 〈R, NU, SU〉 and sends it to the server, mas-
querading as U . A protection against this “man–in–the–middle” at-
tack is to encrypt all messages in the authentication protocol so E
cannot interpret any of the communication.

• E observes TU as it is sent from the server to U . Again, applying en-
cryption to the authentication protocol avoids this man–in–the–middle
attack.

• E guesses TU . This attack is extremely unlikely. Since TU is 64 bits
long, the chances that E correctly guesses TU are 1 in 264. The ran-
domness of TU is dependent on the quality of the random numbers
that SecureRandom provides.

4.1.4 Implementation of Authentication

The jnfs.security package implements the authentication protocol out-
lined above. It provides an Authentication class that manages the various
stages of the protocol. The Challenge, Response, and Token classes encapsu-
late the data required by the Authentication class.

4.2 Authorization

Once the user’s authenticity is verified, jnfs determines if that user should
is authorized to access a file. The jnfs.security package provides a Per-
missionGranter abstraction that determines if a particular FileSystemUser
should be granted access to a file. It grants access to files by comparing
Access Control Lists to rules specified in an access control policy.

12



4.2.1 Access Control Lists

Every file and directory in jnfs has an Access Control List (acl) associated
with it. Each acl is composed of one or more owners and their positive
and negative permissions, as well as any number of groups which also have
some form of access to the file. The PermissionGranter provides both getAc-
cessControl() and setAccessControl() methods to obtain and modify acls.
Only an owner of a file or the jnfs administrator may change a file’s acl.

The PermissionGranter recognizes a small set of Permissions that could
be granted to a user or group for any file or directory. These include:

• Attributes. Specifies permission to check attributes such as whether a
file exists, is a file or directory, length, modification time, etc.

• Delete. Specifies permission to delete a file.

• Execute. Specifies permission to execute a file.

• List. Specifies permission to list a contents of a directory.

• Read. Specifies permission to read from a file.

• Rename. Specifies permission to rename a file.

• Write. Specifies permission to write to a file.

In order to check if a user should be granted a particular Permission to a
file, the PermissionGranter provides the checkPermission() method. Unlike
the getAccessControl() method which only returns the acl for an individual
file, checkPermission() implements whatever security policy the file system
chooses to use. For example, in unix, a user may read a file only if that
user is granted both the Read permission for that file as well as the Execute
permission for every parent directory of that file.

4.2.2 Rule–Based Access Control Policy

Subclasses of PermissionGranter use a set of rules to implement the checkPer-
mission() method appropriately. The UnixStylePermissionGranter, for exam-
ple, recursively checks all parent directories for Execute permission before
checking the actual file for the requested permission. It also maps Permis-
sions to their equivalent unix mode bits counterparts. It performs several

13



1

10

100

1000

10000

100000

1K 5K 10K 20K 50K 100K 500K 1M 2M 5M

T
im

e 
(m

S
)

File Size

JNFS
NFS

Figure 2: Read performance of the jnfs system vs. nfs on several different
file sizes.

translations, such as mapping List to Read, and Delete to Write on the file’s
parent directory.

Since jnfs runs on top of a native file system, it adapts acls to the na-
tive file system’s conception of file permissions. Since Java does not provide
a platform–independent mechanism for generating acls from the informa-
tion provided by operating system, the UnixNativePermissionGranter class
provides this information by making native calls to stat(), getpwuid(), and
getgrgid(). Similarly, in order to convert acls to unix permission bits, it
makes native calls to chmod() and chown(). An NTNativePermissionGranter
class would make calls to the Win32 equivalents to these functions.

5 Performance

Performance in our simulations was reasonable for a Java application, but
not nearly as good as nfs. On average, jnfs file transfers take about 8
times as long as analogous nfs transfers on a Sun SparcStation 10 running
Solaris 2.5. We present a comparison of jnfs and nfs read speeds on various
different file sizes in Figure 2. There are several factors that lead to worse
performance in our simulation:

• The jnfs server runs as a user-level daemon over a native file system.
Since it does not run as part of the kernel, it incurs a large expense in
traps to the kernel. Similarly, the client also runs in user space, which
further worsens performance.

14



• Since the Java byte–codes are interpreted instead of executed natively,
actual execution of the file system code is much slower. On an nc, nfs
would be slower because it would be implemented in Java instead of a
compiled language.

• The rmi networking protocol has a large overhead in comparison with
nfs’s udp–based implementation. Although many of the jnfs func-
tions transfer a block of data across the network, the rmi service still
marshals and un–marshals this data, resulting in more copying than
necessary.

6 Conclusions

The jnfs system demonstrates the viability of a Java–based network file
system. Although jnfs cannot complete with a native nfs implementation
for performance, it fills a niche left by the omission of a network file system
in the Network Computer Reference Profile.

The strength of jnfs lies in a more secure challenge–response protocol
for authentication and interoperability with native file systems. Both low–
and upper–end nc users can benefit from these capabilities: low–end ncs
gain support for a network file system and upper–end ncs gain support for
network file systems other than nfs.

Acknowledgments

We are grateful to Professor Tom Doeppner of Brown University, for his
advice and guidance throughout this project.

References

[1] Apple, IBM, Netscape, Oracle, and Sun. Network computer reference
profile, 1996. http://www.nc.ihost.com/nc ref profile.html.

[2] T. Berners-Lee, R. Fielding, and H. Frystyk. Hypertext transfer pro-
tocol — http/1.0, 19 February 1996. http://ds.internic.net/rfc/-

rfc1945.txt.

15



[3] Brent Callaghan. WebNFS: The Filesystem for the World Wide
Web, 3 May 1996. http://www.sun.com/solaris/networking/webnfs/-

webnfs.html.

[4] R. Fielding et al. Hypertext transfer protocol — http/1.1, January
1997. http://ds.internic.net/rfc/rfc2068.txt.

[5] J. Franks et al. An extension to http: Digest access authentication,
January 1997. http://ds.internic.net/rfc/rfc2069.txt.

[6] John Gartner. Network computer market takes shape. TechTools, 30
April 1997. http://www.techweb.com/tools/netpc/netpc.html.

[7] James Gosling and Henry McGilton. The Java Language Environment:
A White Paper. JavaSoft Inc., May 1996. http://java.sun.com/docs/-
language environment/.

[8] JavaSoft Inc. Remote method invocation specification, May
1997. http://java.sun.com/products/jdk/1.1/docs/guide/rmi/spec/-

rmiTOC.doc.html.

[9] SunSoft Inc. The NFS distributed file service, March 1995. http://-

www.sun.com/solaris/desktop/nfs.html.

[10] Peter Madany. JavaOS: A Standalone Java Environment, 1997.
http://java.sun.com/products/javaos/javaos.white.html.

[11] J. Postel and J. Reynolds. File transfer protocol, October 1985.
http://ds.internic.net/rfc/rfc959.txt.

[12] Benjamin Renaud. Java Cryptography Architecture API Specification
and Reference. JavaSoft Inc., 1997. http://java.sun.com/products/-

JDK/1.1/docs/guide/security/CryptoSpec.html.

[13] Gustavus J. Simmons. A survey of information authentication. In
Gustavus J. Simmons, editor, Contemporary Cryptology: The Science
of Information Integrity, pages 379–419. IEEE Press, 1991.

16


