
1

1

HTTP Caching & Cache-Busting
for Content Publishers

Michael J. Radwin
http://public.yahoo.com/~radwin/

ApacheCon 2005
Wednesday, 14 December 2005

Large web sites need to provide a personalized experience while keeping page-
download times and bandwidth costs low. Radwin discusses when to use and
when to avoid HTTP caching, and how to employ cache-busting techniques
most effectively. Radwin also explains the top 5 caching and cache-busting
techniques for content publishers.

2

2

Agenda

• HTTP in 3 minutes
• Caching concepts

– Hit, Miss, Revalidation

• 5 techniques for caching and cache-busting
• Not covered in this talk

– Proxy deployment
– HTTP acceleration (a k a reverse proxies)
– Database query results caching

Motivation:
Publishers have a lot of web content

HTML, images, Flash, movies
Speed is important part of user experience
Bandwidth is expensive

Use what you need, but avoid unnecessary extra
Personalization differentiates

Show timely data (stock quotes, news stories)
Get accurate advertising statistics
Protect sensitive info (e-mail, account balances)

Not covered:
Proxy deployment is an interesting subject and deserves an entire lecture by itself

Configuring proxy cache servers (i.e. Squid)
Configuring browsers to use proxy caches
Transparent/interception proxy caching
Intercache protocols (ICP, HTCP)

3

3

HTTP and Proxy Review

4

4

HTTP: Simple and elegant

1. Client connects to www.example.com port 80

2. Client sends GET request

Internet

Internet

Client Server

5

5

HTTP: Simple and elegant

3. Server sends response

4. Client closes connection

Internet

Internet

6

6

HTTP example

mradwin@machshav:~$ telnet www.example.com 80

Trying 192.168.37.203...

Connected to w6.example.com.

Escape character is '^]'.

GET /foo/index.html HTTP/1.1
Host: www.example.com

HTTP/1.1 200 OK

Date: Wed, 28 Jul 2004 23:36:12 GMT

Last-Modified: Thu, 12 May 2005 21:08:50 GMT

Content-Length: 3688

Connection: close

Content-Type: text/html

<html><head>

<title>Hello World</title>

...

7

7

Browsers use private caches

GET /foo/index.html HTTP/1.1
Host: www.example.com

HTTP/1.1 200 OK
Last-Modified: Thu, 12 May 2005 21:08:50 GMT
Content-Length: 3688
Content-Type: text/html

Browser Cache

Client stores copy of
http://www.example.com/foo/index.html on its hard disk
with timestamp.

8

8

Revalidation (Conditional GET)

HTTP/1.1 304 Not Modified

GET /foo/index.html HTTP/1.1
Host: www.example.com
If-Modified-Since: Thu, 12 May 2005 21:08:50 GMT

Revalidate using Last-Modified time

The presence of If-Modified-Since header is what makes this a Conditional GET.
Sometimes called an “ IMS GET” .
If content had actually changed, server would simply reply with a 200 OK and send full
content.

9

9

Non-Caching Proxy

GET /foo/index.html HTTP/1.1
Host: www.example.com

HTTP/1.1 200 OK
Last-Modified: Thu, ...
Content-Length: 3688
Content-Type: text/html

GET /foo/index.html HTTP/1.1
Host: www.example.com

Proxy

HTTP/1.1 200 OK
Last-Modified: Thu, ...
Content-Length: 3688
Content-Type: text/html

10

10

Caching Proxy: Miss

GET /foo/index.html HTTP/1.1
Host: www.example.com

HTTP/1.1 200 OK
Last-Modified: Thu, ...
Content-Length: 3688
Content-Type: text/html

GET /foo/index.html HTTP/1.1
Host: www.example.com

Proxy

HTTP/1.1 200 OK
Last-Modified: Thu, ...
Content-Length: 3688
Content-Type: text/html

Proxy Cache
(Saves copy)

11

11

Caching Proxy: Hit

GET /foo/index.html HTTP/1.1
Host: www.example.com

Proxy

HTTP/1.1 200 OK
Last-Modified: Thu, ...
Content-Length: 3688
Content-Type: text/html

Proxy Cache
(Fresh copy!)

12

12

Caching Proxy: Revalidation

GET /foo/index.html HTTP/1.1
Host: www.example.com

HTTP/1.1 304 Not Modified

GET /foo/index.html HTTP/1.1
Host: www.example.com
If-Modified-Since: Thu, ...

Proxy

HTTP/1.1 200 OK
Last-Modified: Thu, ...
Content-Length: 3688
Content-Type: text/html

Proxy Cache
(Stale copy)

13

13

Top 5 Caching Techniques

14

14

Assumptions about content types

 Rate of change once published
 Frequently Occasionally Rarely/Never

Images
Flash
PDF

CSS
JavaScript

HTML

Dynamic Content Static Content
Personalized Same for everyone

15

15

Top 5 techniques for publishers

1. Use Cache-Control: private for
personalized content

2. Implement “Images Never Expire” policy
3. Use a cookie-free TLD for static content
4. Use Apache defaults for occasionally-

changing static content
5. Use random tags in URL for accurate hit

metering or very sensitive content

16

16

1. Cache-Control: private
for personalized content

 Rate of change once published
 Frequently Occasionally Rarely/Never

Images
Flash
PDF

CSS
JavaScript

HTML

Dynamic Content Static Content
Personalized Same for everyone

17

17

Bad Caching: Jane’s 1st visit

GET /inbox?msg=3 HTTP/1.1
Host: webmail.example.com
Cookie: user=jane

HTTP/1.1 200 OK
Last-Modified: Thu, ...
Content-Type: text/html

GET /inbox?msg=3 HTTP/1.1
Host: webmail.example.com
Cookie: user=jane

Proxy

Proxy Cache
(Saves copy)

HTTP/1.1 200 OK
Last-Modified: Thu, ...
Content-Type: text/html

• The URL isn't all that matters

18

18

Bad Caching: Jane’s 2nd visit

• Jane sees same message upon return
GET /inbox?msg=3 HTTP/1.1
Host: webmail.example.com
Cookie: user=jane

Proxy

Proxy Cache
(Fresh copy of Jane's)

HTTP/1.1 200 OK
Last-Modified: Thu, ...
Content-Type: text/html

19

19

Bad Caching: Mary’s visit

• Witness a false positive cache hit
GET /inbox?msg=3 HTTP/1.1
Host: webmail.example.com
Cookie: user=mary

Proxy

Proxy Cache
(Fresh copy of Jane's)

HTTP/1.1 200 OK
Last-Modified: Thu, ...
Content-Type: text/html

20

20

What’s cacheable?

• HTTP/1.1 allows caching anything by default
– Unless overridden with Cache-Control header

• In practice, most caches avoid anything with
– Cache-Control/Pragma header
– Cookie/Set-Cookie header
– WWW-Authenticate/Authorization header
– POST/PUT method
– 302/307 status code (redirects)

– SSL content

“13.4 Response Cacheability
Unless specifically constrained by a cache-control (section 14.9) directive, a
caching system MAY always store a successful response (see section 13.8) as a
cache entry, MAY return it without validation if it is fresh, and MAY return it
after successful validation. If there is neither a cache validator nor an explicit
expiration time associated with a response, we do not expect it to be cached, but
certain caches MAY violate this expectation (for example, when little or no
network connectivity is available). A client can usually detect that such a
response was taken from a cache by comparing the Date header to the current
time.”

21

21

Cache-Control: private

• Shared caches bad for shared content
– Mary shouldn’t be able to read Jane’s mail

• Private caches perfectly OK
– Speed up web browsing experience

• Avoid personalization leakage with
single line in httpd.conf or .htaccess
Header set Cache-Control private

Note that HTTP/1.0 proxies aren’t expected to understand Cache-Control
header. If you’re really concerned about user information leakage and there’s a
possibility that your users are behind HTTP/1.0 proxies, use technique #5
(random strings in the URL).

22

22

2. “Images Never Expire” policy

 Rate of change once published
 Frequently Occasionally Rarely/Never

Images
Flash
PDF

CSS
JavaScript

HTML

Dynamic Content Static Content
Personalized Same for everyone

23

23

“Images Never Expire” Policy

• Dictate that images (icons, logos) once
published never change
– Set Expires header 10 years in the future

• Use new names for new versions
– http://us.yimg.com/i/new.gif
– http://us.yimg.com/i/new2.gif

• Tradeoffs
– More difficult for designers
– Faster user experience, bandwidth savings

Pushing images to a separate server typically means that designers can’t use 1-
click publishing solutions such as Microsoft Frontpage.

24

24

Imgs Never Expire: mod_expires

Works with both HTTP/1.0 and HTTP/1.1

(10*365*24*60*60) = 315360000 seconds

ExpiresActive On

ExpiresByType image/gif A315360000

ExpiresByType image/jpeg A315360000

ExpiresByType image/png A315360000

24 * 60 * 60 * 365 * 10 = 315360000 seconds in ten years.
You may wish to add other mime types such as application/x-shockwave-flash

25

25

Imgs Never Expire: mod_headers

Works with HTTP/1.1 only

<FilesMatch "\.(gif|jpe?g|png)$">

 Header set Cache-Control \
 "max-age=315360000"

</FilesMatch>

Works with both HTTP/1.0 and HTTP/1.1

<FilesMatch "\.(gif|jpe?g|png)$">

 Header set Expires \
 "Mon, 28 Jul 2014 23:30:00 GMT"

</FilesMatch>

You may wish to add other file extensions such as swf
Cache-Control is preferred for HTTP/1.1
Expires is for compatibility with HTTP/1.0 clients and proxies
When both headers are present, HTTP/1.1 clients typically prefer the Cache-
Control header

26

26

mod_images_never_expire

/* Enforce policy with module that runs at URI translation hook */

static int translate_imgexpire(request_rec *r) {

 const char *ext;

 if ((ext = strrchr(r->uri, '.')) != NULL) {

 if (strcasecmp(ext,".gif") == 0 || strcasecmp(ext,".jpg") == 0 ||

 strcasecmp(ext,".png") == 0 || strcasecmp(ext,".jpeg") == 0) {

 if (ap_table_get(r->headers_in,"If-Modified-Since") != NULL ||

 ap_table_get(r->headers_in,"If-None-Match") != NULL) {

 /* Don't bother checking filesystem, just hand back a 304 */

 return HTTP_NOT_MODIFIED;

 }

 }

 }

 return DECLINED;

}

Also http://use.perl.org/~geoff/journal/22049

27

27

3. Cookie-free static content

 Rate of change once published
 Frequently Occasionally Rarely/Never

Images
Flash
PDF

CSS
JavaScript

HTML

Dynamic Content Static Content
Personalized Same for everyone

28

28

Use a cookie-free Top Level Domain
for static content

• For maximum efficiency use 2 domains
– www.example.com for dynamic HTML
– static.example.net for images

• Many proxies won’t cache Cookie
requests
– But: multimedia is never personalized
– Cookies irrelevant for images

static.example.com won’t cut it, because many cookies will be issued with
“ domain=.example.com” . Unless you’re 100% sure you’ll only issue cookies
with “ domain=www.example.com” , you’ll need to use a completely different
TLD. Yahoo!, for example, uses yahoo.com for dynamic HTML content and
yimg.com for images and other static content.

29

29

Typical GET request w/Cookies

GET /i/foo/bar/quux.gif HTTP/1.1
Host: www.example.com

User-Agent: Mozilla/5.0 (Windows; U; Windows NT 5.0; en-US; rv:1.7) Gecko/20040707
Firefox/0.8

Accept: application/x-shockwave-
flash,text/xml,application/xml,application/xhtml+xml,text/html;q=0.9,text/plain;q=0.
8,video/x-mng,image/png,image/jpeg,image/gif;q=0.2,*/*;q=0.1

Cookie: U=mt=vtC1tp2MhYv9RL5BlpxYRFN_P8DpMJoamllEcA--&ux=IIr.AB&un=42vnticvufc8v;
brandflash=1; B=amfco1503sgp8&b=2; F=a=NC184LcsvfX96G.JR27qSjCHu7bII3s.
tXa44psMLliFtVoJB_m5wecWY_.7&b=K1It; LYC=l_v=2&l_lv=7&l_l=h03m8d50c8bo
&l_s=3yu2qxz5zvwquwwuzv22wrwr5t3w1zsr&l_lid=14rsb76&l_r=a8&l_um=1_0_1_0_0;
GTSessionID835990899023=83599089902340645635; Y=v=1&n=6eecgejj7012f
&l=h03m8d50c8bo/o&p=m012o33013000007&jb=16|47|&r=a8&lg=us&intl=us&np=1;
PROMO=SOURCE=fp5; YGCV=d=; T=z=iTu.ABiZD/AB6dPWoqXibIcTzc0BjY3TzI3NTY0MzQ-
&a=YAE&sk=DAAwRz5HlDUN2T&d=c2wBT0RBekFURXdPRFV3TWpFek5ETS0BYQFZQUUBb2sBWlcwLQF0aXABW
UhaTVBBAXp6AWlUdS5BQmdXQQ--&af=QUFBQ0FDQURCOUFIQUJBQ0FEQUtBTE
FNSDAmdHM9MTA5MDE4NDQxOCZwcz1lOG83MUVYcTYxOVouT2Ftc1ZFZUhBLS0-;
LYS=l_fh=0&l_vo=myla; PA=p0=dg13DX4Ndgk-&p1=6L5qmg--&e=xMv.AB;
YP.us=v=2&m=addr&d=1525+S+Robertson+Blvd%01Los+Angeles%01CA%0190035-
4231%014480%0134.051590%01-118.384342%019%01a%0190035

Referer: http://www.example.com/foo/bar.php?abc=123&def=456
Accept-Language: en-us,en;q=0.7,he;q=0.3

Accept-Encoding: gzip,deflate
Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7

Keep-Alive: 300
Connection: keep-alive

Since a Cookie header is sent, some proxies will refuse to cache the response.

30

30

Same request, no Cookies

GET /i/foo/bar/quux.gif HTTP/1.1
Host: static.example.net

User-Agent: Mozilla/5.0 (Windows; U; Windows NT 5.0; en-US; rv:1.7) Gecko/20040707
Firefox/0.8

Accept: application/x-shockwave-
flash,text/xml,application/xml,application/xhtml+xml,text/html;q=0.9,text/plain;q=0.
8,video/x-mng,image/png,image/jpeg,image/gif;q=0.2,*/*;q=0.1

Referer: http://www.example.com/foo/bar.php?abc=123&def=456

Accept-Language: en-us,en;q=0.7,he;q=0.3
Accept-Encoding: gzip,deflate

Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7
Keep-Alive: 300

Connection: keep-alive

• Bonus: much smaller GET request
– Dial-up MTU size 576 bytes, PPPoE 1492
– 1450 bytes reduced to 550

31

31

4. Apache defaults for static,
occasionally-changing content

 Rate of change once published
 Frequently Occasionally Rarely/Never

Images
Flash
PDF

CSS
JavaScript

HTML

Dynamic Content Static Content
Personalized Same for everyone

32

32

Revalidation works well

• Apache handles revalidation for static content
– Browser sends If-Modified-Since request
– Server replies with short 304 Not Modified
– No special configuration needed

• Use if you can’t predict when content will change
– Page designers can change immediately
– No renaming necessary

• Cost: extra HTTP transaction for 304
– Smaller with Keep-Alive, but large sites disable

Each HTTP request has some latency. When you disable Keep-Alive (as any
large site typically must do to scale), each HTTP request requires a full 3-way
TCP handshake. The handshake latency can be perceptible, especially on a slow
connection such as a 56k modem.

33

33

Successful revalidation

HTTP/1.1 304 Not Modified

GET /foo/index.html HTTP/1.1
Host: www.example.com
If-Modified-Since: Thu, 12 May 2005 21:08:50 GMT

Browser Cache

Apache simply stat()s the file and compares the timestamp to the If-Modified-Since
timestamp. If the file’s timestamp is less than or equal to the If-Modified-Since header,
it returns 304 Not Modified.

34

34

Updated content

GET /foo/index.html HTTP/1.1
Host: www.example.com
If-Modified-Since: Thu, 12 May 2005 21:08:50 GMT

HTTP/1.1 200 OK
Last-Modified: Wed, 13 Jul 2005 12:57:22 GMT
Content-Length: 4525
Content-Type: text/html

Browser Cache

Content has been modified. Client tries to
revalidate again, but revalidation fails because URI
has been updated. Apache returns 200 OK with full
content.

35

35

5. URL Tags for sensitive content,
hit metering

 Rate of change once published
 Frequently Occasionally Rarely/Never

Images
Flash
PDF

CSS
JavaScript

HTML

Dynamic Content Static Content
Personalized Same for everyone

36

36

URL Tag technique

• Idea
– Convert public shared proxy caches

into private caches
– Without breaking real private caches

• Implementation: pretty simple
– Assign a per-user URL tag
– No two users use same tag
– Users never see each other’s content

37

37

URL Tag example

• Goal: accurate advertising statistics
• Do you trust proxies?

– Send Cache-Control: must-revalidate
– Count 304 Not Modified log entries as hits

• If you don’t trust ’em
– Ask client to fetch tagged image URL
– Return 302 to highly cacheable image file
– Count 302s as hits
– Don’t bother to look at cacheable server log

38

38

Hit-metering for ads (1)

<script type="text/javascript">

var r = Math.random();

var t = new Date();

document.write("<img width='109' height='52'
src='http://ads.example.com/ad/foo/bar.gif?t="
+ t.getTime() + ";r=" + r + "'>");

</script>

<noscript>

<img width="109" height="52" src=
"http://ads.example.com/ad/foo/bar.gif?js=0">

</noscript>

No, this is not RFC 2227, which uses headers like “ Connection: meter” and
“ Meter: count=1/0”

39

39

Hit-metering for ads (2)

GET /ad/foo/bar.gif?t=1090538707;r=0.510772917234983 HTTP/1.1

Host: ads.example.com

User-Agent: Mozilla/5.0 (Windows; U; Windows NT 5.0; en-US; rv:1.7)
Gecko/20040707 Firefox/0.8

Referer: http://www.example.com/foo/bar.php?abc=123&def=456

Cookie: uid=C50DF33E-E202-4206-B1F3-946AEDF9308B

HTTP/1.1 302 Moved Temporarily

Date: Wed, 28 Jul 2004 23:45:06 GMT

Location: http://static.example.net/i/foo/bar.gif

Content-Type: text/html

Moved

40

40

Hit-metering for ads (3)

GET /i/foo/bar.gif HTTP/1.1

Host: static.example.net

User-Agent: Mozilla/5.0 (Windows; U; Windows NT 5.0; en-US; rv:1.7)
Gecko/20040707 Firefox/0.8

Referer: http://www.example.com/foo/bar.php?abc=123&def=456

HTTP/1.1 200 OK

Date: Wed, 28 Jul 2004 23:45:07 GMT

Last-Modified: Mon, 05 Oct 1998 18:32:51 GMT

ETag: "69079e-ad91-40212cc8"

Cache-Control: public,max-age=315360000

Expires: Mon, 28 Jul 2014 23:45:07 GMT

Content-Length: 6096
Content-Type: image/gif

GIF89a...

41

41

URL Tags & user experience

• Does not require modifying HTTP headers
– No need for Pragma: no-cache or Expires in past
– Doesn’t break the Back button

• Browser history & visited-link highlighting
– JavaScript timestamps/random numbers

• Easy to implement
• Breaks visited link highlighting

– Session or Persistent ID preserves history
• A little harder to implement

42

42

Breaking the Back button

• User expectation: Back button works instantly
– Private caches normally enable this behavior

• Aggressive cache-busting breaks Back button
– Server sends Pragma: no-cache or Expires in past
– Browser must re-visit server to re-fetch page
– Hitting network much slower than hitting disk
– User perceives lag

• Use aggressive approach very sparingly
– Compromising user experience is A Bad Thing

43

43

Summary

44

44

Review: Top 5 techniques

1. Use Cache-Control: private for
personalized content

2. Implement “Images Never Expire” policy
3. Use a cookie-free TLD for static content
4. Use Apache defaults for occasionally-

changing static content
5. Use random tags in URL for accurate hit

metering or very sensitive content

45

45

Pro-caching techniques

• Cache-Control: max-age=<bignum>
• Expires: <10 years into future>

• Generate “static content” headers
– Last-Modified, ETag

– Content-Length

• Avoid “cgi-bin”, “.cgi” or “?” in URLs
– Some proxies (e.g. Squid) won’t cache
– Workaround: use PATH_INFO instead

In other words, these are ways to make dynamic content look like static content.

46

46

Cache-busting techniques

• Use POST instead of GET
• Use random strings and “?” char in URL
• Omit Content-Length & Last-Modified
• Send explicit headers on response

– Breaks the back button
– Only as a last resort

Cache-Control: max-age=0,no-cache,no-store
Expires: Tue, 11 Oct 1977 12:34:56 GMT

Pragma: no-cache

47

47

Recommended Reading

• Web Caching and
Replication
– Michael Rabinovich &

Oliver Spatscheck
– Addison-Wesley, 2001

• Web Caching
– Duane Wessels
– O'Reilly, 2001

48

48

Slides: http://public.yahoo.com/~radwin/

